Applications of Quadratic Functions

EX. 1 Using the graph at the right, It shows the height h h (height (feet)) in feet of a small rocket t seconds after it is launched. The path of the rocket is given by the equation: $h = -16t^2 + 128t$ How long is the rocket in the air? _____ What is the greatest height the rocket reaches? ____ About how high is the rocket after 1 second? After 2 seconds, about how high is the rocket?_____ is the rocket going up or going down? _____ After 6 seconds, about how high is the rocket? ____ fime (seconds) is the rocket going up or going down? _____ 6. Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds? Explain your answer. Using the equation, find the exact value of the height of the rocket at 2 seconds.

- **EX2:** A ball is thrown in the air. The path of the ball is represented by the equation $h = -t^2 + 8t$. Graph the equation over the interval $0 \le t \le 8$ on the accompanying
- a) What is the maximum height of the ball?______
- b) What is the amount of time that the ball is above 7 meters? ______

grid.

time (seconds)

*HINT: For part b, make a table from t = 0 to t = 8

EX3: A swim team member performs a dive from a 14-foot high springboard. The parabola below shows the path of her dive.

- a) What is the axis of symmetry?
- b) Find f(6) _____

*HINT: For part b, find the height when the distance is 6

- After t seconds, a ball tossed in the air from the ground level reaches a height of h feet given by the function h(t) = 144t - 16t2.
 - a. What is the height of the ball after 3 seconds?
 - b. What is the maximum height the ball will reach?
 - c. After how many seconds will the ball hit the ground before rebound?

HINT: For part c, factor using the greatest common factor.

- A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will
 fall into the lake after exploding at its maximum height. The rocket's height above the
 surface of the lake is given by the function h(t) = -16t² + 64t + 80.
 - a. What is the height of the rocket after 1.5 seconds?
 - b. What is the maximum height reached by the rocket?
 - c. After how many seconds after it is launched will the rocket hit the lake?

HINT: For part c, factor. Don't forget to use the GCF to start your factoring.